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We introduce a new object retrieval approach where besides cameras, Inertial Measurement Unit (IMU)
sensors are used for the retrieval of 3D objects. Contrary to computationally intensive deep learning
recognition and retrieval solutions we focus on lightweight methods which could be utilized in handheld
devices and autonomous systems equipped with moderate computing power and memory. We use fast
and robust compact image descriptors and the relative orientation of the camera to build multi-view-
centered retrieval object models. As for retrieval the Hough transformation paradigm is used to evaluate
the results of queries applied on several frames of a video. We analyze the performance of our lightweight
approach on several test datasets and with different comparisons, including automatic tracking for the

MU generation of queries. These experiments show the advantages of our proposed techniques since retrieval
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rate could be significantly increased.
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1. Introduction

While optical information is crucial for the recognition of
objects in the real world, other information, such as depth and
audio data (e.g. [30,29]) are also often utilized. Besides the improv-
ing image quality of low-cost cameras, new sensors appeared in
the last few years in handheld devices: IMUs are capable to esti-
mate the orientation, position, and motion of cameras or other
mobile devices. In our paper we show our attempts to utilize these
sensors to help the retrieval and recognition of 3D objects. We
build up multi-view object models composed of 2D images with
additional orientation information. Thus instead of real 3D point
and texture data we store, in the object models, only image infor-
mation and orientation data from several view points (see Fig. 1)
and during the retrieval process we fit the measurement data to
the possible candidate models to answer the queries.

There are several psychophysical supports for two-dimensional
view interpolation theory for object recognition in the human
visual system. In [18] it is suggested that the human visual system
can be described by recognizing 3D objects by 2D view interpola-
tion. In [19] viewpoint aftereffects also prove that object-
selective neurons can be tuned to specific viewing angles in the
human visual system. The spatial properties of objects were always
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considered as significant information in the retrieval and represen-
tation of images [27]. View-centered recognition methods can be
considered as early machine vision attempts for the recognition
of 3D objects. The idea of storing only a limited number of views
of 3D objects and then applying transformations to find correspon-
dence with other views already appear for example in [20] where
novel views are generated by the linear combination of stored
ones. Rigid objects with smooth surfaces and articulated objects
could also be represented this way.

Handheld/mobile 3D object recognition is a difficult task due to
changing viewpoints, varying 3D to 2D projections, possible differ-
ent noises (e.g. motion blur, color distortion, and thermal noise
under weak illumination), and the limited computational perfor-
mance and memory capacities. Local feature descriptors (like SIFT,
FAST, etc.) are often used for view-centered recognition. In [6] the
underlying topological structure of an image dataset was gener-
ated as a neighborhood graph of features. Motion continuity in
the query video was exploited to demonstrate that the results
obtained using a video sequence are more robust than using a sin-
gle image.

It is obvious that video gives much more visual information
about 3D objects than simply 2D projections. Not only the different
views of the objects can be recorded but the 3D structure can be
reconstructed by direct [31] or indirect [32] structure from motion
techniques. However, these later approaches generally require
high quality images and camera calibration with relatively large
computational power still far from most of the mobile computing
platforms and intelligent sensor motes.
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Fig. 1. Model generation setup with target object in the centre.

Luckily mobile computing devices often contain inertial mea-
surements units (IMUs) and the calibration of cameras can be
combined with IMUs [23]. However, it is still an open question
how to exploit the IMUs in video retrieval and recognition omit-
ting camera calibration and without going through the structure
from motion reconstruction methodology. Our research is
focused on a view-centered model where information about
the relative position of the target object and the camera is
exploited. Preliminary experiments already showed (see [3,4])
that IMUs can help in the retrieval process with low computa-
tional demands. However, the problem caused by low quality
query images, fast object tracking and/or segmentation still can
be a problem in this framework being also a subject for
research.

The main contributions of our paper are showing how effi-
ciently IMUs can help the retrieval and how efficient lightweight
methods can be in case of limited number of 3D objects. It is also
an advantage of our approach that it does not require any knowl-
edge of camera calibration or viewpoint while generating the
model. Moreover, the proposed method is efficient if the quality
of the queries is low, it has a built in mechanism to amend, based
on IMU data, possible missing visual information by the insertion
of candidates to the evaluation set.

Contrary, it is not the purpose of our paper to find the most
appropriate visual feature extractor and descriptor. While we
apply the Color and Edge Directivity Descriptor (CEDD) [1,2] as
an efficient, fast and low dimensional descriptor our proposed
model also could use other popular descriptors (such as SIFT, FAST,
GHOST, etc.). To prove the efficiency of our proposal several test-
beds were used and in order to obtain realistic test scenarios; sig-
nificant motion blur and heavy Gaussian noise was applied on the
query images. Besides these simulations we carried out real-life
tests where the queries were generated with the help of a semi-
automatic process: first the target object was marked by the user
then, in the consecutive frames, a mean-shift based tracking algo-
rithm was tracing the object and generating the further query
images.

2. Previous works

Due to the limitation of the article we can’t give a comprehen-
sive review of this ever improving area but focus on papers with
similar aims and solutions (recognition of 3D objects by moving
cameras).

In an early paper of [14] recognition was achieved from video
sequences by employing a multiple hypothesis approach. Appear-
ance similarity, and pose transition smoothness constraints were
used to estimate the probability of the measurement being gener-
ated from a certain model hypothesis at each time instant. A
smooth gradient direction feature was used to represent the
appearance of objects while the pose was modeled as a von
Mises-Fisher distribution. Recognition was achieved by choosing
the hypothesis set that has accumulated the maximum evidence
at the end of the sequence. Unfortunately, the testing of the
method was carried out on four objects only.

In [15] in addition to the camera they used the accelerometer
and the magnetic sensor to recognize the landscape. Clustered
SURF (Speeded Up Robust Features) features were quantized using
a vocabulary of visual words, learnt by k-means clustering. For
tracking objects the FAST corner detector was combined with sen-
sor tracking. Because of the small storage capacity of the mobile
device a server-side service was needed to store the large number
of images.

In [5] authors created object models, for video object recogni-
tion, with the help of SIFT points gathered from images taken by
rotating around the object. Feature points were tracked from frame
to frame and video matching was achieved by the comparison of
every view of the query with all components of the optimized
models of candidates. While the accuracy was about 80% in case
of 25 objects, the complexity was too high to be implemented on
mobile platforms. Also no explicit technique was utilized to dis-
cover the intrinsic structure of sequentially recorded query images
and IMUs were not used.

In [6] also SIFT points were used as visual features. The under-
lying topological structure of an image dataset was generated as a
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neighborhood graph of features. Graph pruning was used to get
simplified structures and motion continuity in the query video
was exploited to demonstrate that the results, obtained using a
video sequence, are more robust than using a single image. The
ratio of correct retrieval increased to 80% with the method from
only 20% of single image queries in case of 100 objects while the
complexity was not discussed. Besides using computationally
intensive feature extraction only visual sensors were used in the
recognition process.

Recently used multilayer deep learning recognition approaches
discover intricate structure in large data sets by using the back
propagation algorithm to indicate how a machine should change
its internal parameters that are used to compute the representa-
tion in each layer from the representation of the previous layer.
While there are such successful techniques for object recognition
in large databases [21,22], these techniques require tremendous
performance regarding processing power and memory, far from
the capabilities of autonomous and mobile devices.

In [3,4] we introduced a novel visual retrieval mechanism
involving the camera’s orientation sensors. Now, we improve the
sensor-fusion model with a candidate voting mechanism and with
tree indexing resulting in the significant increase of hit-rate at rel-
atively fast operation. Also by the extension of the test dataset we
could give better analysis and comparisons with the results of
others.

3. Retrieval with the fusion of optical and IMU sensors

3D objects can be represented using either object-centered or
view-centered models. Object-centered representations use the
features of the objects, like boundary curves, 3D points, surfaces
to define the volumes of space or the texture of the boundary sur-
faces. Contrary, view-centered representations model the outlook
of objects as captured from different viewpoints. Since objects
can look very differently from different viewing directions image
feature descriptors, the storing database, the search mechanism,
and the feature similarity measure should be carefully designed
to minimize the amount of data space, retrieval time and to max-
imize the hit-rate of retrieval. Fig. 1 illustrates the view-centered
approach where the object of interest is in the focus of the camera.
To get a complete object model a larger number of different Azi-
muth and Elevation angles are required. However, for average
applications the elevation can be limited (in our test we used only
one elevation angle typical for an object placed on the table).

3.1. Feature extraction

There are three main aspects of choosing the right features for a
specific image retrieval task: to carry enough information to distin-
guish images; to be invariant to possible distortions; to be subject
of fast and robust comparisons. Previously (see [10,16]) we inves-
tigated different types of descriptors in real-life circumstances:
MPEG-7 based methods (MPEG7 CLD, MPEG7 EHD, MPEG7 SCD,
MPEG?7 Fusion); local feature based methods (SURF, SURFVW [1],
SIFT); Compact Composite Descriptors [1,2] (Compact CEDD, CEDD,
Compact FCTH, FCTH, JCD, CCD Fusion, Compact VW); and others
(Tamura texture descriptor, Color Correlogram and Correlation
(ACCC) [11], MPEG7-CCD Fusion [2]). We found two main effects
that could seriously degrade the performance of image descriptors
in real-life conditions: the change in appearance of colours under
different lighting conditions and colour balance settings, and the
loss of contrast due to motion blur typically occurring when the
image is taken under low lighting conditions with a handheld cam-
era. Detailed descriptions and results of those tests are available in
[10,16]. Contrary to the popularity of SIFT (and similar descriptors

in its family such as SURF) in image retrieval we found serious
drawbacks such as running time, touchiness to blur and high
dimensionality. CEDD was found one of the most robust, fast and
compact among those. In [10] and in [16] it is showed that CEDD
is quite tolerant for different noises and can be computed fast in
today’s mobile platforms. CEDD [1] is a block-based approach
where each image block is classified into one of 6 texture classes
(non-edge, vertical, horizontal, 45-degree diagonal, 135-degree
diagonal, and nondirectional edges) with the help of MPEG7 EHD
(Edge Histogram Descriptor). Then for each texture class a 24 bin
color histogram is generated where each bin represents colors
obtained by the division of the HSV color space. The values of the
generated histogram of length 6x24 are then normalized and quan-
tized to 8 bits. Besides its robustness and compactness, however,
we should note that there are two disadvantages of CEDD com-
pared to some other popular local point descriptors:

e in its original form it is not rotation invariant;
e as it is a global descriptor it needs proper area selection for the
target.

The first issue can be handled with a proper similarity measure
(see Section 3.2), the second can be fulfilled with manual or auto-
matic segmentation methods. While in our recent application and
tests a bounding rectangle around the target was designated man-
ually (or rather the camera was moved to have the object within a
bounding box), a good choice for an automatic method could be
the Grabcut algorithm known from [17]. It is clear that there are
always newer and better global and local descriptors (for an over-
view see [12]), the selection of the most appropriate one is out of
focus of this paper. Our idea for sensor fusion and for the search
mechanism could be implemented with other feature descriptors.

Besides optical information we propose to use the orientation
information of the camera. Since the position of the target object
is not fixed (not only buildings or statues are being recognized) rel-
ative orientation (degree) information between the object views is
to be estimated. The accuracy and precision of todays’ IMU sensors
allow their application on many fields (for an overview of these see
[28]) including our framework. Fig. 2 shows the distribution of
absolute orientation error measured in 6 cycles (8 positions
checked in each) with our tablet (see specification in Section 4.5).
While in most of our experiments we used the same device, in case
of experiments with the ALOI dataset we used these statistics to
simulate IMU noise (see Section 4).

3.2. Image difference estimation

The difference of CEDD descriptors is efficiently given with the
help of the Tanimoto Coefficient [1]. Let g; be the descriptor of the
ith view from the query and c; be the descriptor of the jth view of a
candidate. The Tanimoto Coefficient is then:

TC(g;,¢) = — q{Cj T S
q;q;i + ¢ G —q; G
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Fig. 2. IMU measurement error distribution.
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where ¢! is the transpose vector of the descriptor g;. In case of abso-
lute congruence of the vectors, the Tanimoto Coefficient takes the
value 1, while in case of maximum deviation the coefficient tends
to 0. The difference of CEDD vectors is:

T(q;,¢) = 1-TC(q;,6) (2)

We need a modified Tanimoto coefficient to achieve rough rota-
tion invariance:

TC*(q;, ) = MaxXTC(q un. ) (3)

where roll € {0°,45°,90°,135°} and ¢;,,; means that orientation
specific texture class positions are shifted within the CEDD vector
of the query. (Please note, that the extraction of CEDD descriptor
values should not be changed, only comparisons take more time
to fit the actual candidate c; best).

Please note, that since objects have different appearances from
different directions, they will be represented with several frames
and the corresponding descriptors. These will be denoted such
cjs (that is descriptor of frame f of object j). Reasonably for queries
we use only one index to denote the view.

3.3. Object retrieval concepts

In this section, before introducing our proposed retrieval
method, we describe different retrieval mechanisms: for the ease
of understanding we start with simple extensive search of only
visual data. Our purpose is to give a comparison between the con-
cept of pure image retrieval and our new sensor fusion approach
and explain our motivation for the proposed voting approach.
We give the complexity of the concepts (not including special
indexing techniques) based on the core complexity of comparing
the descriptors of two images. Since the whole retrieval processes
contain other time consuming steps the final complexity and the
applicability can be checked by testing the implementations
(which is given in Section 4.5).

3.3.1. EIS (Extensive image search)
In this case only visual CEDD descriptors are used for retrieval:
N}’ frames are taken from the video as query frames to compute the

average distance resulting in complexity O(N, N}’ * Nf), where N
is the number of candidate objects, and Ny is the number of frames

in candidates. The distance function between query g and candi-
date object c; is:

N
Zki‘l rnflnT(qlm le)

.0 =gy

(4)

Note that we did not utilize the spatial relation of query images,
they were handled independently. See Fig. 3 for the illustration of
the approach, where the blurred query images are compared to all
views of candidates.

3.3.2. SIIS (Selected image and IMU search)

In this approach we show that testing only one (selected) frame
from the query against all model frames then using the known rel-
ative orientation for the evaluation of other query frames results in
much lower complexity without sacrificing retrieval rate. That is
we define the following distance function between a query q and
candidate c;:

mfinT(q,U Cif) + 2w T (1, Cinsry)
q
Nf

where ¢; o, means the candidate model frame from object i which
has the same (or very close) relative orientation difference Ao from
arg mingT(qy, ¢is) as frame [ from frame k in the query. That is first
we find the best matching frame of a selected query frame in can-
didates based on visual information then compare the visual
descriptor of other c; frames found at the same (or closest) orienta-
tion positions. The selection of the query frame, used for extensive
visual search, can be based on its quality, information content, or
time order; in evaluation experiments we used a randomized selec-
tion. The complexity of this approach can be described as:
O(Nc % (Nf +2 * (N — 1))). Since there is no guarantee that we find

a frame at the exact relative position in the candidate model we
use the best matching of the left and right neighbors in the closest
available orientations (this explains the multiplication by 2 in the
above equation). Please see Fig. 4 for illustration. In Section 4 we
will show that in spite of its lower complexity the hit-rate is slightly
above of EIS thus orientation information from IMUs could compen-
sate the omitted extensive search of multiple visual descriptors.

3.3.3. EIIS (Extensive image and IMU search)

While the previous approach can be vulnerable to the only
query frame used to find the right view in each candidate, by
involving all queries in the extensive search we can utilize all avail-
able information of the query. Thus we test all frames from the
query against all views of the candidate but when computing the
distance we keep the constraint that the frames should be in the
same relative orientation in the candidates and in the query. The
distance is then:

min "y, T(qy, Ciauk)

Ci, o
(g, c) = =% N

(6)

where ¢k denotes the candidate model frame which has the
same (or very close) relative orientation Aw as k frame in the query.
The complexity of the EIIS approach can be described as
O(Nc + NI+ N§).

3.3.4. Voting of candidates (VC)

The disadvantage of the previous methods was that those could
not handle outliers properly. In real-life cases it can easily happen
that an image is taken accidentally, or a query frame has so poor
quality (e.g. due to the shaking of the hand) that it is should not
be considered as a valid query. Since it is not easy to reliably eval-
uate the quality of a query itself, rather we consider lists of candi-
dates that could correspond to the sequence of queries. This
evaluation is made by a voting process: elements of independent
retrieval lists will vote for the most reminder object view.

3.3.4.1. Hough transformation paradigm. The classical Hough trans-
form was originally concerned with the identification of lines, later
it has been extended to identify positions of arbitrary shapes (cir-
cles and ellipses) in images. Recently, Hough transformation is
known to be efficiently used for object detection [24], object track-
ing [26] and action recognition [25]. In general there are two main
steps of recognition in this framework:

Step 1. Feature extraction: visual, depth or other observation data
can be used to generate descriptors (d; € D) to gather
information about a space/time event or object.

Step 2. Voting: each occurrence of a descriptor votes for a candi-
date ¢; with a weight ©(c;, d;). In many cases the weights
are determined by training and their value can also
depend on other factors (such as the temporal distance
from the candidate).
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Candidate object model

Query Views

Fig. 3. Illustration of the EIS approach: only the images of the query are compared to the images of the candidates independently. The similarity of the query sequence and

candidates are based on the sum of Tanimoto Coefficients.

Candidate object model

(04

Query Views

o+ Aa, +Aa,

Fig. 4. lllustration of the SIIS approach: after finding the best matching frame of a query and a candidate, other frames are also compared selected on the bases of their similar

relative positions as the frames of the query.

In general the Hough Score for a candidate is given:

H(e) =Y O(c;,dy), (7)
d;

and the recognition is done by selecting the object with the highest
score:

c=arg rniaxH(c;). (8)

In our framework d; will be the CEDD descriptors and IMU data,
and Eq. (7) will be evaluated over the set of candidates of indepen-
dent retrieval lists as described below.

3.3.4.2. Voting of candidates. In our case the time instances are lim-
ited to the query occasions. Unfortunately, the orientation data
served by the IMU sensors can’t be used as part of the descriptor,
since those are relative values, rather the difference between two
views can be used (as will be introduced into the voting itself).

In our retrieval process all queries g; (some frames of input the
video sequence) generate their own retrieval list L;(I) with limited
length (e.g. N, = 4) by running independent searches in the object
models. That is we have a sequence of retrieval lists, one for each

query view, and all the retrieved candidates give votes based on
visual similarity and relative orientation. As the Tanimoto Coeffi-
cient measure similarity between the query and the actual candi-
date TC(q;,cjy) will be one term of the vote, while the weighted
term will be responsible for the orientation difference:
| A iy — Dow| where AB;,; is the difference between the orienta-
tion values of two frames of candidate object i:

APigy = a(Cig) — o(Cip), 9)

and Ao is the difference between the orientation values of consec-
utive queries:

Ao = o(q;) — 0(Giq)- (10)
So for the Hough Score we get:

N1-1
H(ci)=_ max (TC(qN}’vcijN};)+ D (TC(qy Cij,) = WI A Bijigi, — A0‘!«)) ,
k=1

jst. c,vjkeLk
(11)

where vector j stores the indices of frames of object i in relevance of
query k (please note, that we have separate j for each candidate
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object), and w is a constant weight. That is j will contain indices
of ¢; frames maximizing the Hough Score for object i (j, for query
-
Practically, satisfying Eq. (8) means the evaluation of Eq. (11)
when traveling through all paths connecting the views of the same
objects on the different retrieval lists (see Figs. 5 and 6 for illustra-
tion). Since the length of the lists is limited it can easily happen
that no representative of an object appears on the lists. If an object
is not on any of the lists then simply it is out of focus of our search.
However, if it appears on any but missing from some, then those
lists are extended with a view of the object s.t. its relative orienta-
tion corresponds to the relative orientation of the actual query.

The complexity of this approach is roughly the same as of EIS,
which can be considered as high.

3.3.4.3. Feature indexing. View-centered video-based object recog-
nition and retrieval approaches can use thousands of views and
thus can easily suffer from high complexity. In our model we have
not only one but several CEDD descriptors of the objects extracted
from different viewing directions. Object features might overlap
among the images of the same object which requires special atten-
tion to keep the size of model database at minimum. Moreover, as
we have to run several queries in the VC approach fast searching
mechanisms are required. KD-Tree is an efficient data structure,
established by Friedman, Bentley and Finkel [7], and is often used
for fast indexing and retrieval. In [8] authors improved the KD-Tree
for a specific usage: indexing a large number of SIFT and other
types of image descriptors. They also extended priority search to
search among multiple trees in a simultaneously way. In [9] paral-
lel KD-Trees were explored for ultra large scale image retrieval in
databases containing dozens of millions of images.

View-centered Object Models

For the VC method we use a single KD-Tree containing the
CEDD descriptors of all objects, as the number of candidate views
(typically below 100,000) does not require the use of such multiple
tree solutions. The tree was built in the standard way, based on the
variance and mean of CEDD descriptors, as given by [7]. The com-
plexity of the VCI (Voting Candidates + Indexing) approach now
changes to: O(N7 = Nf¥) + O'(N, N{), where Nf¥ is the number of
frames in the KD-Tree leaf node (typically around 14). Please note
that the complexity of the combinatorial evaluation of possible
paths through the retrieval list can be high (exponentially increas-
ing for Nﬁ) so it is given by O', since not being on the core bases of
comparing two CEDD descriptors. That is, besides the rough esti-
mations summarized in Table 1, we need time measurements to
get a better picture of time complexity as will be given in
Section 4.5.

3.3.4.4. Post filtering for recognition. In many applications it is pos-
sible that untrained objects are targeted to be recognized. To avoid
false recognition we have to evaluate the confidence of the best
hypothesis found by the VCI method. If we find the confidence of
the best candidate low, we should reject it and declare that the
views of an unknown object were captured. For this purpose we
extended the object models to store the CEDD differences (Eq.
(2)) with c}*¢ the views loaded with distortion (resulting in matri-

ces of size N; « N;). Now, we are able to estimate a view-dependent

average “typical” distance of model views and noisy
approximations:
1 .
T (Cium.) == 2 T(Circle™) (12)
q Vke(lm,...)

\

Single CEDD KD-Tree

.

Object views + \

IMU data

K CEDP "vectors \
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Fig. 5. Illustration of the VCI approach with three retrieval lists (N}’ = 3). Since C5 was not on L, but on L; and L3, C54 was added based on its relative orientation.
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Algorithm: VCI search

Input:

1- One binary KD-Tree (K) for all CEDD vectors (x;) and orientation data for all
object model views in the training database; each tree node k; contains also two
variables kmqr (the index of the highest value of the variance vector calculated
from all vectors x; € k;), and kmean (the mean of vectors in node k; at kmaz)-

2- The CEDD vectors (y;) for query @, i is the index of query views, and o; is the

orientation data for query views.

Output: Best matching candidate object for query Q.

Operation:

1. For each vector y; € @, traverse K from root node with y; as follows:

i. If traversed node k; is leaf node:
(a) For each view v € k;, compute Tanimoto Coefficient T'(v, y3).
(b) Choose the four v-s with the smallest 7" distances.
(c) Generate retrieval list Ly, for y;, consisting of object views
of the v-s of point (b) above.
ii. If traversed node k; is not leaf node:
(a) If yi[kmaz] < Emean, then traverse to the left child node of k;, else traverse
to the right child node of k;.
2. Let Rr be the set of retrieval lists for ), then evaluate candidate object ¢; based
on retrieval lists:
i. If ¢; appears on any retrieval list but missing from some, then those lists
are extended with a view of ¢; s.t. its relative orientation corresponds to
the relative orientation of query.
ii. For each ¢; being on the retrieval lists Rz, compute H(¢;) using Equation 11.

3. The object which has highest value is the best matching candidate object for the

query Q.

Fig. 6. VCI (Voting Candidates + Indexing) search algorithm.

Table 1
Complexity of different approaches at N. = 16,N; = 50,N}""f = 14, and different N}’.
Method 0() Query Views (Nf)
2 4 8 16
EIS, EIIS, VC O(Nc + Nf + Nf) 1600 3200 6400 12,800
SIIS O(Nc + (Nf +2 % (Nf = 1))) 832 896 1024 1280
VC + KD-Tree (VCI) O(N}’ . N}eaf) + O/(NLsN?) 28 +0' 56 +0' 112+ 0 224+ 0
A hypothesis can be tested by thresholding: The reader should be aware that this confidence model is orienta-
did i TV T " tion adaptive: i.e. some views of objects can be modeled with high
Decision = {AcFept can .l ate l TM/TTy,, <T (13) sensitivity to noise (if T is relatively small) while other views of
Reject candidate if T"/T™" > Th the same object with low sensitivity if (T™” is relatively large).

Please note, that this post-filtering step will be evaluated only in

M - . .
where T is the average distance of the query and the candidate the tests of Section 4.3.

according to the views on the retrieval lists of the VCI method.
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4. Experiments and results

In this Section we introduce the various (fully 3D-shaped)
object model datasets, the test queries, the hit-rate of the different
methods and the measured time complexity.

4.1. Object model datasets

We used three separate datasets, with different size and nature,
for testing purposes: SUP, ALOI, and SUP-25.

SUP is a small dataset including 16 objects, where 44-73 views
per object were captured by our tablet from the same elevation but
from different azimuth leading to approximately 900 images.
Image sizes and side ratios varied a lot as shown in Fig. 7.

The second one is the ALOI dataset [13] including 1000 small
objects, where 72 images of each object were recorded by rotating
the object in the plane at 5° steps, as examples show in Fig. 8.

The SUP-25 dataset, illustrated in Fig. 9, includes 25 different
objects, where 64-77 images of each object were recorded from
different views at the same elevation leading to approximately
1800 images. This dataset was created by our tablet to test the
VCI approach with automatic tracking applied for the generation
of queries.

4.2. Retrieval performance on SUP and ALOI datasets

The purpose of these experiments is to show the advantage of
the retrieval performance of the VCI over the other approaches.
Since each object was tested 10 times, the query datasets (separate
for the different datasets) are composed of 10 x 8 (N = 8) ran-
domly selected images of each object, either distortion free,
strongly distorted with motion blur, or by additive Gaussian noise.
(Please note, that while the 8 views are set to be different, the 10
random test cases have common views at chance.) We have chosen
these two types of distortions since in previous evaluations [16] we
found many image descriptors to be most vulnerable to these com-
mon quality degradations happening often in real life. We used the
built-in function of Matlab imnoise with standard deviation
sd = 0.012 to generate additive Gaussian noise (GN) and made
motion blur (MB) by fspecial with parameters len = 15, and angle

0 = 20 degrees. Some examples of the distorted queries are shown
in Fig. 10.

To be more realistic we removed not only the query images
from each model during testing: we deleted every view from the
models within 10° angle from a possible query. (We have chosen
10° since it is slightly above the accuracy of the IMU sensor as
shown in Fig. 2.) Since the queries were randomly selected the
closest orientation angle between a query and an available model
view was observed to be between 10 and 30 degrees. Thus the size
of the model sets reduced to 34% for the SUP, and to 69% for the
ALOI dataset. In tests with ALOI the IMU data of the queries were
loaded with the noise measured in Section 3.1.

We tested all approaches using the SUP and the ALOI dataset, all
with distortion free and with strongly distorted queries (MB and
GN).

Figs. 11 and 12 contains the hit-rates at different N}’—s. As it is
easy to see the three basic methods run close to each other; EIS,
SIIS, EIIS is the increasing order. That is the orientation informa-
tion, included into the different models, could add valuable infor-
mation to improve the hit-rate of these methods. Our proposed
VCI model overcomes all these three significantly except for only
very few data points. Higher number of queries results in higher
hit-rates unexceptionally and GN makes more problem for the
descriptor than MB.

We also evaluated the role of w in Eq. (11). Fig. 13 contains
information for only the ALOI dataset (due to space limitations).
It seems that the optimal value for w is somewhere between 0.1
and 0.5 and comparing with the case w=0 the maximum
improvement is below 4%. That is a large amount of the contribu-
tion of orientation information is not via the orientation term of Eq.
(11), but by the fact that the retrieval lists are occasionally
extended by missing candidates based on the relative orientation
of the actual view.

4.3. Recognition performance with the SUP dataset

To achieve recognition instead of retrieval we should evaluate
the confidence of the best candidate and make a decision about a
possible false acceptance (see Section 3.3.4.4). To test the perfor-
mance of our approach from this aspect we added 9 untrained

Fig. 7. Test model object examples from the SUP dataset.
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Fig. 9. Test model object examples from the SUP-25 dataset.

object to SUP (see some examples on Fig. 14) and applied MB for
the queries.

Fig. 15 shows the results for different Th thresholds of the post-
filtering method. As would be expected the results are worse than
for retrieval with the 16 objects. Now, a hit was counted only when
an object was correctly recognized or an untrained object was rec-
ognized as unknown. In these tests the increase of the number of
query views had also a positive effect on the hit-rate giving the
best results at Th = 2.

4.4. Retrieval performance with automatic segmentation on the SUP-
25 dataset

In some human operated real-life applications users are to
select a target object then the application should make the queries

automatically from different views. Queries for the experiments
with SUP-25 were recorded with the tablet. The user was asked
to mark the target object with a bounding box on the live image
then continuous adaptive mean-shift was to track it when moving
the object around (typically 90° change in viewing direction at the
same elevation). While the targeted objects were not occluded
they were surrounded with others and the background was differ-
ent than in the models. The automatic tracking can adjust the posi-
tion and the size of the bounding window by using invariant
moments, these windows are given to the query engine. The prin-
ciple of the tracking algorithm is given in details by [33]. Fig. 16
illustrates some tracked windows and the environment of the
objects.

Table 2 contains the hit-rates for different number of queries
telling that even a simple tracking algorithm was successful to
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Fig. 14. Examples for untrained objects to test recognition.
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Fig. 15. Average hit-rate for the SUP dataset with 9 extra untrained queries with
different thresholds.

generate queries to reach almost 100% for N? = 8. Comparing these

results to those of Figs. 11 and 12 we find that our previous estima-
tions were not far from these real-life tests.

4.5. Running times

As we have seen it is not convenient to evaluate the complexity
of the methods since the different parts of the algorithms react dif-
ferently for the various parameters. For this reason we imple-
mented them on a tablet and made time measurements. Tests
were run on a Samsung SM-T311 tablet equipped with Android
42.2 Jelly Bean, 1GB RAM, and ARM Cortex A9 Dual-Core
1.5 GHz Processor. Fig. 17 contains the average running time of
10 measurements on a database of 100 objects. Only the retrieval
mechanisms are considered in this graph for comparison, the gen-
eration of CEDD descriptors (which is about 0.04 s for a frame of
size 640 x 480) and the tracking algorithm (0.7 s per frame) is
not included. As expected from Table 1 SIIS has low running time
just as VCI for low Nj‘Z. However, while SIIS increasesqalmost linearly
with NJ‘Z, VCI grows exponentially due to the (NL)Nf combinatorial
evaluations of possible paths through the retrieval lists.

Fig. 16. Top row: examples for the results of tracking. Bottom row: objects and their environment.
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Table 2
Hit-rate of VCI with object tracking for SUP-25.

Method Query Views (N}’)
2 6 8
vl 72% 84% 92% 96%
20 International Conference on Signal Processing, Pattern Recognition and
""" EIS Applications (SPPRA), 2009, pp. 134-140.
- -ElIS [3] L. Czani, M. Rashad, Lightweight video object recognition based on sensor
151 =SIS — fusion, in: International Workshop on Computational Intelligence for

—VC (With Indexing)

Time [Sec]
)

(4]

2 4 6 8
#Query Views

Fig. 17. Average running time for EIS, SIIS, EIIS, VC and VCI approaches on a dataset
of 100 objects.

Finally, we can conclude that our VCI code (without special code
optimization or code parallelism) can achieve slightly below 8 s/8
queries, for a database of 100 objects, resulting in practically
real-time operation on a mobile device (for SUP it is 0.345s/8
queries). The memory space required for a database of 100 objects
is around 1.2 MB.

5. Conclusion

The recognition of 3D objects is important for future’s autono-
mous systems and for other intelligent applications. However, it
is not only the 3D shape, but the 2D views from different directions
of objects, that can help us in the retrieval or recognition of 3D
objects. To get orientation information of the camera, the cheap
and reliable IMU sensors can be used. Our main contribution is
showing that view-centered models can easily fuse visual and ori-
entation information resulting in the increase of retrieval perfor-
mance. We proposed a method based on the Hough paradigm
named Voting Candidates where the orientation information was
involved in supplement of answers to queries and also considered
in the evaluation of similarity. The time complexity (without GPU
or code optimization) is close to real-time and allows the applica-
tion of the model in lightweight units such as embedded systems
in the near future. Our results are supported by tests on three data-
sets, using large number of queries loaded with significant noise,
and real-life retrieval combined with tracking. We believe not only
CEDD but other descriptors could also benefit from IMU sensors
and the performance of the approach could even be improved
using HMMs to analyze the probability of candidates through a
sequence of observations.
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